
# LINEAR INEQUALITIES

### **Basics of Inequalities**

• 
$$a > b \Rightarrow a + c > b + c$$





 ab > 0, if a, b have same signs ab < 0, if a, b have opp. signs</li>



• 
$$a > b \Rightarrow \begin{cases} \frac{1}{a} < \frac{1}{b}, & \text{if ab} > 0 \\ \frac{1}{a} > \frac{1}{b}, & \text{if ab} < 0 \end{cases}$$

Square and square roots of inequalities are not done

## **Example of Representation on lines**

Includes

O Doesn't Include

27



#### WAVY CURVE METHOD

#### When powers of factors are not included

Step 1

Put all factors equal to zero & mark corresponding values on real line

Step 2

Put +ve on extreme right & alternate signs towards left

$$\frac{(x-1)(x-3)}{(x-4)} \ge 0$$
 Put factors = 0, we get,  
  $x = 1 \text{ or } x = 3 \text{ or } x \ne 4$ 

We need greater or equal to 0. So,  $x \in [1,3] \cup (4,\infty)$ 

#### When powers of factors are included

- For odd powers, change sign
- For even Powers, Continue same sign

$$\frac{(x-1)^{34}(x-3)^{15}}{(x-4)^{27}} \ge 0$$
 Put factors = 0, we get,  
 x = 1 or x = 3 or x \neq 4



Sign Remains same as (x-1) has an even power

Sign changes as (x-4) has an odd power

So, x € (-∞,31U(4,∞)



#### **Modulus Related Equations**

$$\bullet \ \sqrt{x^2} = |x| = \pm x$$

• 
$$|x| = a$$
 then  $x = \pm a$ 

• 
$$|x| \le a$$
 then  $x \in [-a, a]$ 

• 
$$|x| \ge a$$
 then  $x \in (-\infty, a] \cup [a, \infty]$ 

• 
$$a < |x| < b$$
 then  $x \in (-b, -a) \cup (a, b)$ 

• 
$$a < |x - c| < b$$
  
then  $x \in (-b + c, -a + c) \cup (a + c, b + c)$ 

#### **Logarithmic Inequality**

For logab, then following should be remembered

| Condition                                                                                                                                                                                                                                             | Logarithm Inequality                                 | Exponential form                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|
| a > 1                                                                                                                                                                                                                                                 | $\log_a x_1 > \log_a x_2$<br>$\Rightarrow x_1 > x_2$ | $\log_a b \ge c$ $\Rightarrow b \ge a^c$ |
| 0 <a<1< td=""><td><math display="block">\log_a x_1 &gt; \log_a x_2</math><br/><math display="block">\Rightarrow x_1 &lt; x_2</math></td><td><math display="block">\log_a b \ge c</math><math display="block">\Rightarrow b \le a^c</math></td></a<1<> | $\log_a x_1 > \log_a x_2$<br>$\Rightarrow x_1 < x_2$ | $\log_a b \ge c$ $\Rightarrow b \le a^c$ |

#### **Exponential Inequality**

| Condition                                                                                                 | Exponential form                           |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| a > 1                                                                                                     | $a^{x_2} > a^{x_1}  \Rightarrow x_1 > x_2$ |  |
| 0 <a<1< th=""><th><math display="block">a^{x_2} &gt; a^{x_1}  \Rightarrow x_1 &lt; x_2</math></th></a<1<> | $a^{x_2} > a^{x_1}  \Rightarrow x_1 < x_2$ |  |

